

Agenda

- Field Research
- Communications Challenges
- Communications Solutions
- Lessons Learned
- Further Research
- Conclusions

Field Research

- Conducting controlled experiments or observing natural phenomena in a remote location of interest
- Allows use of a "real" environment as the laboratory
 - More realistic conditions = more useful data
 - Good for lunar/planetary analog experiments

Why Field Work Is Useful

- Provides basic validation of candidate technologies and procedures under mission-like conditions
- Allows evaluation of the usefulness of communications technologies in support of science objectives
- Uncovers operational challenges and unexpected occurrences
- Allows side-by-side comparison of new and existing technologies
- Relatively easy to do many available locations are good space analogs
- Satellite links provide cost effective relaying of science data to distributed teams
- High-fidelity simulations are possible

Why Field Work Is Useful to Netwonks

- Networking research
 - High bandwidth, long delay data transfers
 - Multimedia over satellite
 - Evaluation of wireless network technologies for surface exploration activities
 - Ad hoc routing
 - Detailed wireless network monitoring for performance evaluation and security
 - Software defined radio
- Gain experience relevant to NASA space communications efforts
 - Space Communications Architecture Working Group
 - Constellation Program
 - Lunar Communications Working Group

Field Testing Can Help Evaluate...

- New communications standards
- Space-specific modifications
- Mission voice, video and data over wireless
- End-to-end communications From spacesuit and sensor to space data consumer
- Antenna/hardware design
- Delay tolerant techniques
- Mesh networking technology
- Sensor networks
- Mission scenarios and operations concepts

Supported Field Experiments

Science

- Ground Truthing, Vernal, UT
- MARTE: Rio Tinto, Spain and Santa Cruz, CA
- Canadian Arctic Axel Heiberg Island, Devon Island

Technology Trials

- Mobile Agents experiments Mars Desert Research Station (MDRS), Hanksville, UT
- Desert RATS, Meteor Crater, AZ
- K-9 Robot tests, Santa Cruz, CA
- Ad hoc networking trials, Moss Point, CA, and Meteor Crater,
 AZ

Educational Outreach

- Spaceward Bound, Atacama Desert, Chile
- Disaster Response
 - Post-Katrina emergency communications NASA Michoud

Mobile Agents - MDRS, Utah

 Testing autonomy and voice recognition software, wireless communications hardware to facilitate humanrobotic interaction

Desert RATS - Meteor Crater, Arizona

 Multiple activities, including testing of prototype spacesuits, vehicles, robots, and voice/data communication systems

MARTE - Rio Tinto, Spain

 Testing of drill for extracting soil samples for biological, chemical analysis

Axel Heiberg Island, Nunavut, Canada

- McGill Arctic Research Station
- Studies of environment, glaciers, and native flora/fauna

Communications Challenges

- Researchers and equipment must be able to communicate with home institutions...
 - Need connectivity both external and internal to the site
 - Science data
 - Voice/Video
 - Internet usage
- ... But no existing communications infrastructure at field site
 - Must bring and set up as part of initial phase of activity
 - Must keep equipment operating in potentially harsh environmental conditions

Application Requirements

Science data

- Example: Large data files from science instrument, transferred all at once
- Key parameters: Low loss rate, high throughput desirable
- Real-time telemetry
 - Example: Continuously streaming sensor data
 - Key parameter: Low latency; low bandwidth often OK
- Real-time video/voice
 - Examples: Skype, VoIP phones
 - Key parameters: Low jitter; high throughput for video
- General Internet usage
 - Examples: E-mail, Web browsing
 - Key parameters: Low latency, high throughput

Communications Solutions

- Hybrid network
 - On-site wired and wireless LANs
 - Satellite link to network gateway facility
 - Existing terrestrial IP networks
- Design considerations:
 - Specific applications to be used
 - Degree of node mobility
 - Terrain
 - Cost
 - Geographic extent of operations

Example Network – Mobile Agents

Architecture Details – On-site

- Transportable satellite ground station
 - Provides satellite connectivity to external networks
 - Dish + transceiver + satellite modem + IP router
- Ethernet-based wired LANs
 - Connect stationary systems (e.g., servers)
- Wireless LANs
 - Connect mobile systems (e.g., laptops, PDAs, science instruments)
 - Based on IEEE 802.11 family (b, a, g, n)
 - Also part of the field research objectives increased throughput, robustness, and/or range
 - High throughput, low loss at short distances, worse at longer
- Voice/Video
 - IP phones, video encoders

Architectural Details - Satellite Link

Common characteristics

- Usually K_u band (12-18 GHz), but also C band (4-8 GHz) and K_a band (26-40 GHz)
- Throughput scales according to price
- Low loss and jitter
- High latency (~300 ms one-way)

Connects to fixed ground station

- Provides connectivity to one or more terrestrial networks (NASA, academic, commercial)
- NASA/academic networks have less competing traffic, (sometimes) reduced security concerns
- High throughput, low loss if no congestion
- Latency can vary, but jitter is typically low

Example Field Ground Stations

Lessons Learned – System Optimization

- Tuning end systems for high-latency satellite links is essential
 - TCP only sends new packets when previously sent packets are acknowledged
 - In high-latency links, sender can wait a long time for acknowledgement; meanwhile link is idle
 - Can increase TCP window size, or maximum amount of unacknowledged data that sender will tolerate
- Another option: performance-enhancing proxies (PEPs)
 - External devices that intercept TCP traffic and relay over the satellite link using a more suitable protocol
 - Requires no tuning of end hosts, useful for large deployments
 - Additional hardware cost, need ability to insert PEP on both sides of satellite link
 - Preliminary testing Comparable to TCP tuning on low-speed links; may be better for high-speed links

Lessons Learned - Network Optimization

- Multiplexing many types of traffic with different network requirements can cause trouble
 - Some types of traffic may crowd out others
- Can use QoS to prioritize traffic
 - Higher-priority traffic (e.g., science data) is transmitted ahead
 of lower-priority traffic (e.g., voice/video)
- Monitoring network traffic is important
 - Ensure applications are getting proper service from the network
 - Identify suspicious traffic that may indicate virus activity
- VPN tunneling is helpful
 - Configure system addresses in the lab, then use same addresses in the field – saves setup time

Lessons Learned – RF Engineering

- Wireless channel isolation is a problem for multiple access points/repeaters
- Multipath is a problem in obstruction-laden terrain
- Antenna design and positioning critical
- Ad hoc network protocols can help when RF connectivity is marginal
- Distances up to several miles not a problem with repeaters
- Sun + snow + K_a band = no link

Lessons Learned – Mission Ops/Management

- Communications capabilities enable new mission models
 - Real-time collaboration between researchers in the field and remote colleagues
 - Analysis of collected data by remote supercomputing facilities
 - External reference material (e.g., weather forecasts, data sets for comparison) readily available in the field
- New procedures specifically developed to take advantage of communications capabilities
 - Remote collaborators directing science activities as they occur
 - Distributed planning/analysis of day-by-day activities

Research Example: Ad Hoc Routing

- Field tested Ames implementation of Dynamic Source Routing
 - Basic Idea: If source S and destination D are out of range, but there is a path between them through one or more intermediate nodes, then intermediate nodes can relay traffic
- Testing identified conditions in which DSR performed well...
 - Allowed indirect communication where direct RF communication was impossible
- ... and also problem areas
 - Route discovery process can be time-consuming, leading to latency spikes

Partnering With Other Organizations

- IP connectivity to commercial VoIP services for Katrina relief
- Local satellite link and RedIRIS for access during Rio Tinto expedition
 - Link supplied by Spanish partner
 - Lower cost for in-country link
- Shared-access commercial satellite service for local predeployment field tests
 - Low speed, low cost
 - Tunneled NASA addresses
 - Multimedia not possible

Further Research

- Delay/disruption tolerant networking
 - Store data if suitable connectivity doesn't currently exist
- Mesh networking IEEE 802.11s
 - Nodes automatically select best neighbor for relaying data, similar to DSR
- Sensor networks
 - Integrating low-power wireless sensors (e.g., ZigBee) into network architecture
- Optimizing voice/video encoding for wireless channels
 - "Less bad" quality over lossy channels, better quality over good channels
- IEEE 802.11n wireless networking standard
 - Higher throughput, better ability to cope with multipath
- IEEE 802.16 (WiMax) wireless networking standard
 - Enable wireless coverage over broader area

Conclusions

- Communications networks provide essential voice, video, and data service to researchers
- Field exploration activities present a variety of communications challenges
- Properly designed network can overcome these challenges and provide critical service

Acknowledgements

- NASA Ames Research Center
 - Intelligent Systems Division
 - Disaster Assistance Recovery Team
 - Space Science and Astrobiology Division
- NASA Glenn Research Center
- NASA Johnson Space Center
- NASA Kennedy Space Center
- McGill University
- Telesat Canada
- Cisco Systems
- ShoreTel, Inc.

References

- M. Johnson, K. Freeman, R. Gilstrap, and R. Beck, "Networking technologies enable advances in Earth science," Computer Networks, Vol. 46, No. 3, 22 October 2004.
- W. Clancey, et al, "Mobile Agents: A Distributed Voice-Commanded Sensory and Robotic System for Surface EVA Assistance," http://ti.arc.nasa.gov/m/pub/658h/0658%20(Clancey).pdf
- National Aeronautics and Space Administration, "Desert RATS
 Overview." http://www.nasa.gov/exploration/analogs/desert_rats.html
- National Aeronautics and Space Administration, "Mars Astrobiology Research and Technology Experiment," http://marte.arc.nasa.gov/
- J. Toung, R. Gilstrap, and K. Freeman. "A Split Implementation of the Dynamic Source Routing Protocol for Lunar/Planetary Surface Communication," Proceedings of the IEEE Aerospace Conference, Big Sky, MT, 2006.
- T. Stone, et al, "A Lunar Communication Satellite Network Architecture Employing Internet Protocol, Laser Communication Technologies and Small Satellites," Proceedings of the AIAA Conference on Satellite Communications, San Diego, CA, 2008.

Questions?

